索尼AI CEO:我们要让AI在30年内拿到诺贝尔奖
当前位置 :首页>产业新闻>返回
时间:2021-09-14 编辑: 来源:36氪

“到2050年,要让AI凭自己的科研成果拿下诺贝尔奖!”

索尼计算机科学实验室首席执行官北野弘明博士,为了开发匹敌顶尖科学家头脑的AI,提出了诺贝尔图灵挑战计划。

这是一次人工智能与自然科学领域的梦幻联动。

人类的力量太有限了,那就创造出AI来替人类实现无限可能。

“当AI强大到能处理复杂现象时,就有机会探索人类科学家当下无法理解的事物。”

他们计划,将AI的算力优势应用于无穷的科学发现中,利用强大的信息处理能力,帮助人类进行科学发现,找到新的研究突破。

AI的优势在哪?

和人类相比,人工智能拥有的算力,可以实现对多领域、庞大信息量的快速处理,这远远超出人类对信息的处理能力。

而人类科学家常常会局限在个体的知识范围内,所以在科学探索中,存在一定的劣势。

科学探索就是不断试错的过程,一些突破性的重大发现,往往来源于“失误”。

比如导电聚合物聚乙炔薄膜,它诞生于一次实验失误,合成过程中错误地使用了比正常浓度高一千倍的催化剂。

1.jpg

人类科学家不会去做这种超出常理的实验,而这样的设计却可能被AI实现。

看似关系不大的领域,背后的联系却可以借助AI来抽丝剥茧,扩展更丰富的科学假设。

对这些假设的验证筛选,同样离不开机器学习训练。

基于AI科学家的已有发现不断探索假设空间,生成详细的证明或论据,以评估新生成假设的有效性和重要性。在这样的假设验证过程中,AI不断进行着自我强化学习。

2.jpg

比如已经被成功应用到实际场景中的AI工具Adam-Eve,就在酵母基因组学和药物开发领域发挥了重要作用。

Adam成功预测了酵母菌新功能,找到了芽殖酵母中的孤儿酶;Eve则发现了三氯生成分可以靶向抑制DHFR酶来治疗疟疾。

科学家AI的发展

当然,现在AI科学家最受质疑的,就是其本身的“黑盒”特性。

为了让科学AI系统建立并维持可信度,就要避免黑盒效应,消除数据偏见。

“要让AI做出的科学发现被科学界接受,就必须拥有令人信服的证据,和背后逻辑清晰的推理。”

类似Adam-Eve这类闭环实验室自动化系统,AI能够在人类具体的指令中,完成复杂的实验,以高效的机器处理取代人类低效的实验步骤。

例如,借助AlphaFold预测蛋白质结构,仅仅一周时间就预测出了98.5%的人类蛋白质。大大加速了蛋白质组学的研究进程。

而利物浦大学的“移动化学家”,则具备了自主发现高活性催化剂的能力。

北野弘明对AI科学家未来的发展方向做出大胆假设。随着系统自主性的提高,人类的指令将变得抽象,AI科学家对要测试的假设以及要执行实验的优先级独立决策。

理想中的AI科学系统,是一个结合了软件工具、数据访问和嵌入闭环实验体系的多重多智能体系统,具有高度交互性、互用性和可扩展性。

构成它的多个AI系统专注于各自领域,能够更广泛地探索假设空间,将独立领域互相结合起来。

3.jpg

关于AI科学家,另一个引起社会关注的话题,就是伦理问题。

整个发展阶段中,AI可以一直作为工具被人类应用。但是随着AI自治程度的不断提高,人类更多地充当起监督者的角色,以防止系统被滥用。当然也可以允许AI高度自治,以产生更有突破性的科学假设。

AI参与到科学研究领域中,对于科研成果的归属界定,同样也是需要严肃对待的社会问题。

DABUS“人工神经系统”的开发者曾为其申请专利权,欧英美专利机构均以“不是自然人”为由驳回申请。然而近期澳大利亚法院开创先例,做出裁决,承认了DABUS系统的专利发明人身份。

随着人工智能的不断发展,相应的社会规则也应当逐步完善,为AI科学家提供适宜的社会环境。不过,在对人类做出极大贡献的科学研究面前,发明者是人类或是AI,似乎都不是十分重要的事了。


《斗罗大陆:魂师对决》买量复盘

7月手游买量观察榜

iOS畅销榜周报

健康游戏忠告:抵制不良游戏 拒绝盗版游戏 注意自我保护 谨防上当受骗 适度游戏益脑 沉迷游戏伤身 合理安排时间 享受健康生活

京ICP备15024595号-1

游戏客栈 游戏客栈